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Abstract. We consider the production of charm by real and virtual photons. Special attention is paid
to diffractive charm production, which provides information on the gluonic content of the Pomeron. Our
calculations are based on the gluon distributions of the CKMT-model, which is shown to lead to agreement
with the data on open charm production in deep inelastic scattering. We compare predictions for diffractive
charm production of different models for the distribution of gluons in the Pomeron. Experiments at HERA
should be able to discriminate between them. Predictions for beauty production in diffractive and non-
diffractive interactions of photons are also given.

1 Introduction

The production of heavy quarks in deep inelastic electron
scattering from a proton has received increasing attention
recently, since this reaction is seen as a tool to probe the
gluon distribution in the nucleon. Due to the large mass of
the quark, the reaction is believed to be driven by a pertur-
bative mechanism, photon-gluon fusion, and is therefore
sensitive to the nucleonic gluon density. We consider here
in a consistent way the production of charm in deep in-
elastic scattering (DIS) as well as in hard diffractive scat-
tering. The latter process, while driven by the same basic
reaction mechanism, probes a different gluon density. As
the diffractive processes are mostly seen as mediated by
the Pomeron exchange, the relevant quantity in diffractive
production is then the gluon distribution in the Pomeron;
a review can be found in [1].

The distribution of gluons in the proton is known now
comparatively well from deep inelatic scattering for x ≥
10−2, but for smaller values of x information on gp(x,Q2)
is very limited. A comparison of theoretical predictions
on charm production in the HERA energy range with ex-
perimental data allows one to test small-x behaviour of
gluonic distributions.

Diffractive production of hadrons in deep inelastic scat-
tering has been observed in experiments at HERA [2,3].
The gluonic content of the Pomeron is poorly known.
Studies of the Q2-dependence of the Pomeron structure
function [4–8] lead to the conclusion that the distribu-
tion of gluons in the Pomeron is hard and that they carry
the main part of the Pomeron momentum. However there
are big differences between gluon distribution functions
gP (x,Q2) in different models.

It is the purpose of this paper to present a consis-
tent approach to open charm photo- and electroproduc-

tion as well as diffractive charm production. The gluon
distributions we use are based on the model of [9], here-
after referred to as CKMT. No new parameters are intro-
duced into our calculations. In this approach there is only
one basic Pomeron, which contributes in different ways to
both “soft” and “hard” mechanisms. This can be repre-
sented in terms of an effective or “dressed” Pomeron with
a Q2-dependent intercept. It was the basis of a very com-
pact parametrization by CKMT for the structure function
F2 and distributions of quarks and gluons in the proton,
which was used as an initial condition for QCD evolution
[9]. Also diffractive vector meson production (ρ, φ, ψ) by
real and virtual photons [10] could be described very well
by this model without additional parameters.

There have been a variety of investigations on aspects
of charm production in deep inelastic and diffractive scat-
tering, in part going beyond the leading order. In order
to achieve a clear and simple discussion of these reac-
tions, we confine ourselves to the leading order terms in
the cross sections. This more phenomenological approach
seems reasonable in view of the large sensitivity of pertur-
bative QCD calculations to the heavy quark mass and the
present uncertainty in the data.

In Sect. 2 we shall first consider inclusive charm photo-
and electroproduction on the proton. We shall formulate a
method of calculation of the cross sections of heavy quark
production for arbitrary values ofQ2. It will be shown that
the gluon distribution proposed by CKMT gives a very
good description of the existing data on charm produc-
tion. We therefore proceed in Sect. 3 to calculate charm
production in diffractive scattering in the context of the
CKMT model and compare to other models. In Sect. 4
we present predictions for inelastic and diffractive beauty
production by real and virtual photons.
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Fig. 1. a. Photon-gluon fusion diagram. b.
Charm production by the gluon-gluon fusion
mechanism (“resolved” contribution)

a b

2 Charm photo- and electroproduction

In this section we consider the open charm production by
real or virtual photons on a proton. In the past several
prescriptions have been proposed to incorporate the con-
tribution of charm into F2(x,Q2). A widely used method
[11–14] was to generate the charm quarks dynamically,
starting with no intrinsic charm below some threshold
Q2

th ∼ m2
c and to produce charm quarks (considered as

massless) through QCD evolution. However this results in
a too large charm contribution in the threshold region.
We therefore choose a different approach. For moderate
Q2, the fact that the mass of the charm quark is compar-
atively large, mc ∼ 1.5 GeV � ΛQCD, makes it possible
to apply perturbation theory. It was shown in [15] that
therefore more realistic predictions for charm production
can be obtained from the photon-gluon fusion diagram of
Fig. 1a. This is true in a broad region of Q2. Next to lead-
ing order (NLO) calculations in QCD perturbation theory
have been carried out [15–22] for heavy quark production.
These higher order terms lead to no new qualitative fea-
ture and can be incorporated by adjusting the parameters
of the lowest order calculation [15]. In view of this per-
turbative stability and since there are uncertainties in the
charm quark mass and the factorization scale, we prefer to
simply work in the leading order (LO), where the calcula-
tions are very transparent. We shall show that by properly
chosing the charm quark mass and factorization scale one
obtains a good description of the data for charm produc-
tion in DIS. For Q2 � m2

c , on the other hand, higher order
diagrams of the QCD perturbation theory should be re-
summed [23]. Since mass effects can then be neglected,
the charm quarks will be produced dynamically through
QCD evolution, where the charmed quark is considered as
massless. We obtain the charm quark distribution needed
as input for this evolution through the photon-gluon fu-
sion mechanism.

At moderateQ2, the main contribution for large centre-
of-mass energies

√
s is expected to come from the gluon fu-

sion process, shown in Fig. 1a, where a gluon from the pro-

ton interacts with the photon and produces a charm anti-
charm quark pair. We will discuss this mechanism first.
Contributions from “resolved” charm production, Fig. 1b,
are less important and will be dealt with later.

In QCD perturbation theory the cross section for the
process γ(∗)p → cc̄X can be written as a convolution of the
gluon distribution gp(z, µ2

f ) and the partonic cross section
of the photon-gluon fusion process σ̂(γg → cc̄),

σ(γ∗p → cc̄X) =∫ 1
zmin

dz σ̂γg→cc̄(x, z, Q2

m2
c
,m2

c) gp(z, µ2
f ) . (1)

The threshold condition for production af a charm-anti-
charm pair leads to a lower bound for the fraction z of
the proton momentum carried by the gluon, zmin = ax,
where a = 1 + 4m2

c/Q
2 and x is the Bjorken variable. For

the partonic cross section of charm production by photon-
gluon fusion, one finds [23,24] with the Hand convention
for the flux

σ̂γg→cc̄(x, z, Q2

m2
c
,m2

c) =
4π2αEM
Q2(1−x) 2xe2c

αs(µ2
F )

2π C
(

x
z ,

m2
c

Q2

)
,

(2)

where µf is the factorization scale and ec the charge of the
charm quark in units of e. In leading order the coefficient
function C is

C(ζ, r) =
1
2
[ζ2 + (1 − ζ)2 + 4ζ(1 − 3ζ)r − 8ζ2r2] ln

1 + v

1 − v

+
v

2
[−1 + 8ζ(1 − ζ) − 4ζ(1 − ζ)r] , (3)

with
v2 = 1 − 4rζ

1 − ζ
. (4)

In the limit Q2 = 0 (1) yields the photoproduction cross
section. The contribution of charm production to the pro-
ton structure function is given by

F cc̄
2 (x,Q2) =

Q2(1 − x)
4π2αEM

σ(γ∗p → cc̄X) . (5)
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For the gluon distribution, a crucial ingredient in the
calculation of the cross section, we use the CKMT-para-
metrization of [9]. It gives a good description of the HERA
data for the proton structure function F2(x,Q2) at all
Q2 and for diffractive vector meson production [9,10]. We
briefly summarize here only the physics background; de-
tails can be found in the Appendix and in [9].

Experimental studies of small x DIS at HERA [25,26]
had shown a fast increase of the proton structure function
F2(x,Q2) as x → 0, which was considered by some au-
thors as an evidence for a “hard” Pomeron. This Pomeron
has an intercept αP (0) substantially above unity, contrary
to the “soft” Pomeron, which is observed in high-energy
hadronic interactions and photoabsorption, which has an
intercept only slightly above 1: αP (0) ≡ ∆ + 1 ≈ 1.08.
It was argued however by CKMT in [9] that this αP (0)
extracted from high-energy behaviour of hadronic total
cross sections is not the actual intercept of the Pomeron
itself, but an effective value that incorporates large effects
of Pomeron rescattering (multi-Pomeron cuts) in soft pro-
cesses. The actual “bare” value of the pole intercept ex-
tracted from the analysis of many features of hadronic in-
teractions, taking into account multi-Pomeron processes,
was found to be substantially higher, corresponding to
∆ ≈ 0.2 [27]. At large Q2 in DIS the contributions from
rescatterings are much smaller than in hadronic interac-
tions (or γp) and the “bare” intercept determines the be-
haviour of structure functions at Q2 > 1 GeV2. In this ap-
proach there is thus only one Pomeron, which contributes
to both “soft” and “hard” processes. This effective or
“dressed” Pomeron then has a Q2-dependent intercept.
It was used by CKMT to provide a compact parametriza-
tion of the structure function F2 and the distributions of
quarks and gluons in the nucleon. These distributions are
used as initial condition for the QCD evolution [9].

The gluon distribution resulting from this model is

xgp(x,Q2) = Cgx
−∆(Q2)(1 − x)n(Q2)+3 , (6)

with the effective Pomeron intercept determined by

∆(Q2) = ∆(0)
(

1 +
d0Q

2

Q2 + d1

)
. (7)

For low x the gluon density in this model exhibits the x
dependence which is characteristic for the Pomeron ex-
change. The behaviour at x ∼ 1 has been obtained from
counting rules for the sea quarks which are a factor 1 − x
softer than the gluons. Finally, the factor Cg follows from
the momentum sum rule. This parametrization is valid up
to Q2 = 5 GeV2. We actually use it only up to 2 GeV2

and for higher values QCD evolution is applied where the
parametrization provides the initial condition. We take the
running coupling constant with Λ = 0.20 GeV and four
flavours.

The results for charm production are very sensitive to
small changes in the value of the charm mass. We will
use charm photoproduction to fix the value of this pa-
rameter. In (1) and (2) one encounters the factorization
scale µf . The NLO results in [15] showed that the scale

Fig. 2. Charm photoproduction cross section predicted by
the CKMT model. Solid lines: direct contribution for differ-
ent values of the charm mass; from top to bottom mc =
1.3, 1.4, 1.5, 1.6 GeV. Lower dashed line: resolved contribution
with mc = 1.4 GeV obtained with the gluon distribution in the
photon according to the CKMT model. Upper dashed line: the
sum of the direct and resolved contribution (mc = 1.4GeV)

µ2
f = 4m2

c yields the best stability of the perturbative cal-
culations and we will use this now for photoproduction;
other choices will be discussed below in connection with
electroproduction. Since this factorization scale is above
the value of Q2 for which the parametrization is valid, we
use the leading order QCD evolution equations for three
flavours to obtain the gluon distribution at µ2

f .
We calculated open charm production corresponding

to the diagram of Fig. 1a with the gluon distribution func-
tion as given in (6). The results for the total inclusive cross
section are shown for four different values of the charm
mass in Fig. 2. One can see that relatively small changes
in the charm mass lead to large differences in the cross sec-
tion. For a charm quark mass mc = 1.4 GeV our curves
are close to the experimental data and look similar to the
results of the NLO calculation [15,22]. In the following we
shall use this value of the charm quark mass.

For very large energies
√
s the resolved contribution,

shown in Fig. 1b, starts to be important. In this produc-
tion mechanism a gluon from the photon interacts with
a gluon from the proton to produce a charm anti-charm
pair. To obtain the contribution from the resolved pro-
duction, we therefore need the gluon distribution in the
photon, gγ(x,Q2). This distribution is poorly known at
present. For an estimate of the resolved contribution, we
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use a distribution obtained by the same method as for the
determination of the gluon distribution of the proton in
[9] and thus introduce no new parameters. At small x fac-
torization takes place in the Regge pole model. Therefore
the gluon distribution in the photon at low x is propor-
tional to that of the proton; for this proportionality factor
we find

eγ
p ≡ lim

x→0

gγ(x,Q2)
gp(x,Q2)

= lim
s→∞

σtot
γp

σtot
pp

≈ 0.003 . (8)

This factorization is approximately valid also when Pome-
ron cuts are taken into account. The behaviour in the limit
x → 1 is different for the photon and proton and can be
found from counting rules. So we write gγ(x,Q2) in the
form

xgγ(x,Q2) = eγ
p

xgp(x,Q2)
(1−x)2

= eγ
pCgx

−∆(Q2)(1 − x)n(Q2)+1.
(9)

The contribution of the diagram in Fig. 1b is shown in
Fig. 2. It is negligible at energies up to

√
s ∼ 10 GeV, but

increases with energy faster than the dominant photon-
gluon fusion contribution of Fig. 1a. This contribution is
of the order of 10% already at HERA energies. For other
models of gγ(x,Q2) this contribution is larger [22]. It is
also sensitive to the value of the factorization scale and
increases for smaller values of this scale.

We now turn to electroproduction. First we will con-
sider the factorization scale 4m2

c as in photoproduction.
The production of charm quarks gives a large contribu-
tion to the DIS structure function F2(x,Q2) at small x
and large Q2 � m2

c , where they can be considered in the
framework of QCD evolution equation as massless. How-
ever at Q2 ∼ 10 GeV2 or less the charm mass is very
important and the charm quarks cannot be treated in the
same way as the light quarks [15]. We therefore deal with
electroproduction in two different ways, depending on the
value of Q2. For values of Q2 less than a certain value
Q2, we use the perturbative approach for the gluon fusion
process with massive charm quarks as given by (1). To ob-
tain the gluon distribution at the factorization scale 4m2

c ,
we proceed as in the photoproduction case; we start the
QCD evolution for three massless flavours from Q2

0 = 2
GeV2. With this distribution, the charm contribution is
directly obtained from (2). For virtualities larger than Q2

the charm quarks are produced through massless QCD
evolution with four flavours. For the input distributions,
we use the light quark distributions as obtained above
from three flavour massless QCD evolution up to Q2. The
charm input distribution is generated by photon-gluon fu-
sion at Q2.

We determine the transition value Q2 from the per-
turbative approach with massive charmed quarks to the
massless QCD evolution by demanding that this proce-
dure creates an F cc̄

2 below and above Q2 with a smooth
derivative with respect to Q2 at this point. We found that
the values of Q2 yielding a smooth transition in the re-
gion of small x vary from 30 GeV2 to 100 GeV2. In Fig. 3a

we show the charm contribution to the proton structure
function, F2(x,Q2), as given by (2) as a function of the
virtuality Q2 at different values of x; the transition from
massive to massless treatment of the charm quarks is made
at 50 GeV2. We also show the logarithmic derivatives in
Fig. 3b to see their discontinuities at Q2. The change of Λ
in the running coupling constant at the charm threshold
has been taken into account. It follows from Figs. 3a and
3b that for very small x (x ≤ 10−3) the transition from one
regime to the other is very smooth and for Q2 > 50 GeV2

charmed quarks can safely be considered as massless in
the QCD evolution equations. This is in agreement with
results obtained in [19] and also with [15], where it has
been stated that for W 2 = Q2(1 − x)/x ≤ 106 GeV2 the
gluon fusion model should be applied. For x ∼ 0.1 the
mass effects are important up to much larger values of Q2.
Thus, from Fig. 3a we can conclude that for the small x
and Q2 <∼ 500 GeV2 the difference between the prediction
of the gluon-photon fusion diagram and its QCD-evolved
contribution is small.

So far, we have used the factorization scale 4m2
c . An-

other natural candidate for electroproduction is 4m2
c +Q2.

To examine this possibility, we show in Fig. 3c and 3d the
analogous results for this scale. The features are quite dif-
ferent. Now for large x the discontinuity is small, but for
small x it is large, just the reverse of what one finds for the
constant factorization scale. This suggests that one could
use a different factorization scale and/or different transi-
tion value Q2 for different kinematical regimes to obtain
a smooth transition from massive to massless quarks.

Finally, in Fig. 4 we make a comparison of our pre-
dictions for charm photo- and electroproduction with the
data. We show results as a function of W =

√
s for the

factorization scales 4m2
c and 4m2

c + Q2; for the latter we
only show predictions at high Q2 where the difference to
the fixed scale is large. Note that the cross sections for
the different values of Q2 in Fig. 4 are rescaled. The pho-
toproduction data at high energies are from ZEUS and H1
[28,29]; the other experiments are listed in [28]. The low
energy data for electroproduction are from [30,31] and the
high energy data from H1 [32]. The latter data correspond
to Q2 values slightly different from those of the low en-
ergy data and of our calculations. We see that all data are
rather well described. The high Q2 data indicate a pref-
erence for the fixed factorization scale of 4m2

c : the charm
production at different (but not very large) Q2 depends
on the gluon distribution at a fixed scale. Therefore we
will use this factorization scale also for diffractive charm
production.

The deviation of the H1 results at Q2 = 12 GeV2 from
our theoretical prediction is partly explained by the fact
that for our prediction we took the same Q2 as for the low
energy data, i.e. Q2 = 13.9 GeV2. It means that our pre-
dictions are here slightly too small. Nevertheless, the dis-
crepancy remains significant and is difficult to explain in
view of the fact that for other values of Q2 the agreement
between theory and experiment is reasonable and that the
cross sections have only a weak Q2 dependence in this re-
gion. Except for these H1 points, our comparison confirms
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a b

c d

Fig. 3. a. Charm contribution to the proton structure function F2(x, Q2) in the CKMT approach as function of Q2 for different
x; from top to bottom: x = 0.0001, 0.001, 0.01, 0.1. Solid lines are obtained by using the gluon fusion process below Q2 = 50
GeV2 and massless QCD evolution for Q2 > 50 GeV2. Dashed lines: charm contribution by using the gluon fusion model for all
Q2. Factorization scale is µ2

f = 4m2
c . b. Logarithmic derivative of F cc̄

2 obtained from Fig. 3a for x = 0.1 (dot-dashed), x = 0.01
(dotted), x = 0.001 (dashed) and x = 0.0001 (solid line) c. Same figure as a., but with factorization scale µ2

f = 4m2
c + Q2. d.

Same figure as b., but with factorization scale µ2
f = 4m2

c + Q2
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Fig. 4. Comparison of the charm photo-and electropro-
duction cross sections predicted in this paper with ex-
periment for different Q2; from top to bottom Q2 =
0, 1.39, 2.47, 4.39, 7.81, 13.9, 24.7, 43.9, 78.1 GeV2. Solid lines:
µ2

f = 4m2
c . Dashed lines: µ2

f = 4m2
c+Q2. All curves are rescaled

with powers of 10; the k-th curve from the top is rescaled with
a factor 10−k. The data are from [28–30]

the photon-gluon fusion mechanism in combination with
the CKMT gluon distribution at the factorization scale
4m2

c .
In comparing our results to the data, it should be noted

that the “resolved” diagrams of the type shown in Fig. 1b
can contribute also for highly virtual photons. Our esti-
mates indicate that this contribution at present energies is
rather small — it is less than 10% of the main diagram of
Fig. 1a. However in the same way as for real photons the
contribution of Fig. 1b increases with energy faster than
that of Fig. 1a. Thus it will dominate at superhigh energies
where it corresponds to charm production in the central
rapidity region.

3 Hard diffractive scattering
and charm production

In deep inelastic scattering, there are events where parti-
cles are produced only in the fragmentation regions of the
initial particles. We consider here the case that the pro-
ton remains intact, the so called “single diffractive scat-
tering”. This corresponds to a large “rapidity gap” be-
tween the diffractively produced states (with invariant

x
2M

γ

p p

P

γ

p p

P

p p

P ,  f

P

γ

a b

Fig. 5. a. Diffractive dissociaton of the photon in photon-
proton scattering due to the Pomeron exchange. b. Triple-regge
diagram for hard diffractive scattering in the small β region

mass MX) and the recoil proton. This observation is read-
ily explained in the Reggeon theory through the exchange
of the Pomeron (Fig. 5a).

In this section, we discuss the diffractive cross sec-
tion in the Pomeron exchange model [33] and specifically
consider diffractive charm production. As in the total in-
clusive charm production discussed above, gluon fusion
is again the dominant production mechanism for charm.
Therefore, diffractive charm production is sensitive to the
gluon distribution in the Pomeron, which is believed to
consist mainly of gluons. This should be compared to the
analogous inclusive process, where mainly the gluon com-
ponent of the proton is probed. We will use the CKMT ap-
proach to obtain the parton distributions in the Pomeron
and compare its results to two other models for the Pome-
ron parton distributions.

The differential production cross section can be written
as

d4σDIF
dxdQ2dxP dt = 4πα2

EM

xQ4

×
{

1 − y + 2y2

2[1+RDIF(x,Q2,xP ,t)]

}
FD

2 (x,Q2, xP , t)
,

(10)
where we have introduced a diffractive structure function
FD

2 (x,Q2, xP , t). Here x, y and Q2 are the usual DIS vari-
ables and t is the squared momentum transferred to the
proton, t ≡ k2 = (p− p′)2. The variable xP is defined by

xP =
q · k
q · p ' M2

X +Q2

W 2 +Q2 , (11)

with M2
X = (q + k)2 the squared invariant mass of the

diffractively produced particles and W 2 = s = (q + p)2,
the squared CMS energy of the photon-proton system. For
the mechanism shown in Fig. 5a, the variable xP can be
interpreted as the fraction of the proton momentum car-
ried by the Pomeron. The function RDIF in (10) is the
ratio of the longitudinal to transverse part of the cross
section. Integrating FD

2 (x,Q2, xP , t) over xP and t we ob-
tain the diffractive contribution to the total deep inelastic
structure function F2(x,Q2).

For the exchange of the Pomeron pole, the diffractive
structure function FD

2 (x,Q2, xP , t) can be factorized into
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a b

c d

Fig. 6. a. Different parametrizations for the light quark distribution of the Pomeron, ΣP (β), at initial scales Q2
0. Solid line: this

paper with ng = −0.5. Dotted line: this paper with ng = −0.9. Dot-dashed line: GS [6] Dashed line: GK [7]. b. Different gluonic
distributions in the Pomeron at initial scales Q2

0. Solid line: this paper with ng = −0.5. Dotted line: this paper with ng = −0.9.
Dot-dashed line: GS [6]. Dashed line: GK [7]. c. Predictions for the light quark singlet distributions at the factorization scale
by different models. Solid line: this paper with ng = −0.5. Dotted line: this paper with ng = −0.9. Dot-dashed line: GS [6].
Dashed line: GK [7]. d. Predictions for gluon distributions at the factorization scale by different models. Solid line: this paper
with ng = −0.5. Dotted line: this paper with ng = −0.9. Dot-dashed line: GS [6]. Dashed line: GK [7]
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two parts,

FD
2 (x,Q2, xP , t) = f(xP , t)FP (β,Q2, t) , (12)

where the variable β = Q2/(M2
X + Q2) = x/xP plays

the same role as the Bjorken variable x has in DIS: the
Pomeron momentum fraction carried by the partons in
the Pomeron. The first factor represents the Pomeron flux
from the proton and can be written in the form

f(xP , t) =

(
gP

pp(t)
)2

16π
x

1−2αP (t)
P , (13)

where gP
pp denotes the Pomeron-proton coupling. The value

of αP (t) in this flux factor should be taken at some effec-
tive virtuality scale, Q2

eff , since in the model of [9] one
has

αP (t) = 1 +∆(Q2
eff ) + α′

P t , (14)

where ∆ is given by (7). The scale Q2
eff is a priori not

known, but it was argued in [4] that it should be low,
since a hard scale from the top part of Fig. 5b does not get
through to the lower part of the diagram. From theoretical
point of view, values of∆(Q2

eff ) = 0.13 to∆(Q2
eff ) = 0.24

are possible, corresponding to the effective Pomeron in-
tercept without eikonal-type corrections and the “bare”
value, respectively. Both extremes are not excluded by
experimental evidence [2,3]. The Pomeron slope has its
usual value α′

P = 0.25 GeV −2. The second function, the
Pomeron structure function FP , is proportional to the vir-
tual photon-Pomeron cross section. It was emphasized in
[4] that other definitions of the “flux factor” are possible,
e.g. differing from the one above by a constant. Therefore
the normalization of the Pomeron structure function de-
pends on the particular choice of the flux factor. For large
values of MX or small values of β, the Mueller general-
ization of the optical theorem for inclusive cross sections
can be used to represent the cross section given by (10)
in terms of the triple-Reggeon diagram shown in Fig. 5b.
The Reggeon exchange in the upper part of the diagram
is dominated by the Pomeron and f Regge poles. Since
each term factorizes into a Reggeon propagator and a ver-
tex, it is possible to obtain the structure function of the
Pomeron from that of the deuteron [4].

We will below consider the diffractive production in-
volving light quarks and heavy quarks separately, i.e. we
write the Pomeron structure function as

FP = F 0
P + F cc̄

P . (15)

For the contribution of light quarks to the structure func-
tion, we adopt the form for the deuteron structure function
of [9], but with the couplings of the exchanged Reggeon to
the deuteron replaced by the couplings to the Pomeron,

F 0
P (β,Q2, t) = ef

dC
d
f (β,Q2)β1−αf (1 − β)n(Q2)−2

+eP
d C

d
P (Q2)β−∆(Q2)(1 − β)n(Q2)+2 ,

(16)
with the ratios of the coupling constants

ek
d =

rk
PP (t)
gk

dd(0)
, (17)

where rk
PP and gk

dd are the couplings of the Pomeron (k =
P ) or the leading f Regge pole (k = f) to the Pomeron
and to the deuteron, respectively. The values for the ra-
tios ek

d can be estimated from soft diffraction data. In our
calculations we will use eP

d = ef
d = 0.07, which was shown

in [5] to give a good description of the data on the diffrac-
tive structure function FD

2 . The behaviour of the struc-
ture function for β → 1 is determined by the exponent
n(Q2) which was obtained for the deuteron in [9] by using
counting rules. For the Pomeron the exponent has to be
adjusted accordingly since there is one parton spectator
less.

From experiment it follows that the triple Reggeon
couplings are only weakly dependent on t and that for
the Pomeron and the f Regge pole exchange this depen-
dence is approximately equal. It can then be incorporated
in that of the flux factor in (12), i.e. in gP

pp, which is then
parametrized as gP

pp(t) = gP
pp(0) exp(Ct) with C = 2.2

GeV−2 and gP
pp(0)2 = 23 mb. With this parametrization,

the structure function of the Pomeron (or its parton dis-
tributions) do not have the t-dependence any more. The
values of the parameters mentioned above have been all
taken from [4]. We again use the parametrization at an
initial scale of Q2

0 = 2 GeV2 as starting point for QCD
evolution to the desired Q2 value. The contribution of the
light quarks to the Pomeron structure function, FP , is
directly related to the corresponding singlet quark distri-
bution of the Pomeron,

F 0
P (β,Q2) =

2
9
ΣP (β,Q2) , (18)

with

ΣP (β,Q2) =
∑

i=u,d,s

[
βqi

P (β,Q2) + βq̄i
P (β,Q2)

]
. (19)

This singlet distribution at Q2
0 is shown in Fig. 6a.

We now discuss the charmed quark contribution to the
diffractive Pomeron structure function, which is related to
the analogous charm quark distribution,

F cc̄
P (β,Q2) =

4
9

[
βcP (β,Q2) + βc̄P (β,Q2)

]
. (20)

Using photon-gluon fusion as the leading mechanism,
the diffractive charm production can be calculated in the
same way as for charm production in DIS in Sect. 2. This
mechanism for diffractive production is shown in Fig. 7a.
Thus while charm production in DIS was a probe of the
gluon distribution in the proton, the diffractive produc-
tion of charm now probes the gluon distribution in the
Pomeron, which is our main point of interest here. In ad-
dition to the “sea” contribution in Fig. 7a, there is also a
“valence” contribution from the Pomeron structure func-
tion. A typical example of such a contribution can be seen
in Fig. 7b, which has been studied in [34]. The role of these
additional mechanisms, which require further model as-
sumptions, is not clear yet and had not been discussed in
other papers on diffractive charm production. While the
“sea” component is concentrated mostly at small values
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Fig. 7. a. Pomeron “sea” charm contribution. b. Typical di-
agram that contributes to the “valence” charm component of
the Pomeron

of β, it can be shown that the “valence” contribution has
its maximum at β ∼ 0.5 in Fig. 7b. Its value is smaller by
a factor of order 1/m2

c . In this region the “valence” con-
tribution can therefore become comparable to the “sea”
component.

In the CKMT approach, the gluon distribution of the
Pomeron can for low β be obtained from that of the pro-
ton (or deuteron), analogously to the Pomeron quark dis-
tribution discussed above. For a large parton momentum
fraction, however, the analogy breaks down. The gluon
distribution in the nucleon is determined at large x by
the gluon radiation originating from the quarks; in the
Pomeron, which is believed to be mainly composed of glu-
ons, they are a priori present. In [5] therefore the large β
behaviour was modified according to

βgP (β,Q2) = eP
d Cgβ

−∆(Q2)(1 − β)ng , (21)

where ng is a free parameter. The distributions we use
are thus singular at β = 0 due to the β−∆ dependence
dictated by the Pomeron exchange. The observed Q2 de-
pendence of the data indicate that the gluon distribution
should be rather hard and thus ng negative, i.e. between
0 and −1 to yield a normalizable distribution. We use in
the following two negative values of ng, and therefore our
gluon distribution is also singular for β = 1. This can be
seen in Fig.6b, where we show our distributions for a scale
of Q2

0 = 2 GeV2. For the actual calculation of diffractive
charm production, we use QCD evolution to obtain the
gluon distribution at the factorization scale of 4m2

c .
Before showing our results for the diffractive produc-

tion of light as well as charmed quarks, we first discuss the
models of [6–8], where a similar description of the reaction
involving the Pomeron structure function was used: model

I of Gehrmann and Stirling (GS) [6] and model 3 of Golec
Biernat and Kwiecinski (GK) [7].

GK take the following singlet quark and gluon distri-
butions, respectively, at Q2

0 = 4 GeV2:

ΣP (β) = 0.069 K β0.44(1 − β)0.60 ,

βgP (β) = 1.16 K β5 . (22)

The constant K relates the measured t-integrated diffrac-
tive structure function to the Pomeron structure function:

F̃D
2 (x,Q2, xP ) ≡

∫
dt FD

2 (x,Q2, xP , t)

= K

(
1
xP

)∆

FP (β,Q2) . (23)

The value for K depends on xP and is approximate 10 for
the current experiments. The distributions used by GS at
Q2

0 = 2 GeV2 are:

ΣP (β) = 1.02 β(1−β) , βgP (β) = 4.92 β(1−β) . (24)

In order to compare their quark and gluon distributions to
ours, one has to take into account that different normal-
izations of the assumed Pomeron flux, f(xP , t), are used
and they have to be converted to our conventions.

In Fig. 6a and 6b we compare the different model dis-
tributions for quarks and gluons in the Pomeron, all nor-
malized according to our definition of the flux factor. We
show the distributions as originally parametrized on their
respective initial scales, Q2

0. The quark singlet distribu-
tion, ΣP , looks similar in the three models. Except for
the behaviour of the CKMT parametrization at very low
β, the singlet quark distributions show roughly the same
qualitative features for all models, because they were fit-
ted to diffractive production data for β ≥ 0.065. Some dif-
ferences with the CKMT model are due to the fact that
the other models fit to all the diffractive data and thus
also simulate doubly diffractive data with their fit, which
account for about 30% of the cross section.

In contrast to the quark distributions the gluon dis-
tributions of the three models are dramatically different:
the predicted distributions have different shapes. The GK
parametrization is the “hardest” of the three types of dis-
tributions, remaining essentially zero for low beta and hav-
ing its main strength near β = 1. The distribution of GS
is symmetric, vanishing at β = 0 and β = 1, and thus
is peaked in the middle. The gluons in the CKMT model
are distributed with nearly constant density for interme-
diate β values; their distribution diverges at both ends.
It becomes steeper at β = 1 the closer ng gets near −1.
The very large values of gP (β) for intermediate values of
β in the GS and GK models are difficult to reconcile with
the cross sections for jet production in diffractive hadronic
interactions [35]. The most direct test of all models is pro-
vided by the diffractive production of heavy quarks and
we will therefore now look at diffractive charm production
in DIS.

For the calculations, the gluon distributions are used
at the common factorization scale of 4m2

c . They are shown
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a b

Fig. 8. Pomeron structure function (upper curves) and its charm
contribution (lower curves) predicted by different models as function
of β at different Q2. Solid line: this paper with ng = −0.5. Dot-dashed
line: GS [6]. Dashed line: GK [7]. a. Q2 = 10 GeV2. b. Q2 = 100 GeV2.
c. Q2 = 500 GeV2

c
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in Fig. 6d and can be seen to have rather different quali-
tative features than in Fig. 6b. The QCD evolution from
the initial scale Q2

0 to the higher scale shifts the gluon dis-
tributions towards lower momentum fractions. This can
be most clearly seen for the GS model. All gluon distri-
butions are now singular at β = 0. For GS and GK this
is due to the evolution, while CKMT already starts out
singular at the origin due to the β−∆ behaviour, which is
only somewhat modified by QCD evolution. The opposite
effect can be seen at β = 1: the originally singular distribu-
tion in the CKMT model becomes zero. For completeness,
we also show an example for the effect of evolution on the
light quark distribution in Fig. 6c. For GS and GK, the
magnitude of the distribution increases for moderate val-
ues of β. Furthermore, again a slight shift towards small β
occurs. For CKMT, the QCD evolution makes the density
becomes more flat and the change in magnitude is such
that the distribution is lower than the others at interme-
diate β.

One has to be careful when considering the energy-
momentum sum rule, i.e. the integral over β of the sum of
the gluon and quark distributions times β. As was pointed
out before, the choice of the Pomeron flux factor fixes
the normalization of the Pomeron structure function and
therefore the value of the energy-momentum sum rule.
This sum rule needs not to be equal to 1 as was assumed
in several publications. However, the value of this energy-
momentum sum is preserved under QCD evolution. This
explains the changes in magnitude discussed above: in
response to an overall growth in the quark density the
gluon density decreases. At the factorization scale, the to-
tal gluon content of the Pomeron predicted by CMKT is
60% and about 80% for the other models.

The contribution of charm quarks to the Pomeron struc-
ture function produced by the gluon-photon fusion mech-
anism is shown in Fig. 8 for the three gluonic distributions
discussed above and for different values of Q2. The results
are obtained by carrying out a convolution analogous to
electroproduction. To obtain F cc̄

P at a given momentum
fraction β carried by the struck charmed quark, we have
to integrate over gluon momentum fractions starting from
a Q2 dependent cut-off value that follows from the lower
limit in (1). Both the CKMT and GS result increase con-
tinuously as β decreases from this cut-off. The GK result
has a maximum about halfway which originates from its
relatively hard gluon distribution. As the virtuality of the
photon increases, the cut-off moves to larger values, but
the general shape of the curves doesn’t change. For a Q2

value as high as 500 GeV2, the factorization scale we have
chosen may not be appropriate anymore and a Q2 depen-
dent value might be better. In general, the shown predic-
tions are sufficiently different such that future experiments
for charm production in hard diffractive scattering should
be able to discriminate between them.

To see how significant the charm production contri-
butes to the total diffractive cross section, we also show
in Fig. 8 the full FP . Adding these charm quark contribu-
tions results in a (small) Q2 dependent violation of the
sum rule discussed above. The fraction of the total struc-

Fig. 9. CKMT predictions with different ng for the Pomeron
structure function (upper curves) and its charm contribution
(lower curves). Solid lines: ng = −0.5. Dotted lines with ng =
−0.9. For every set the Q2-values are from top to bottom:
Q2 = 500, 100, 10 GeV2

ture function provided by the charm is in all cases most
important for small β and increases with Q2. A measure-
ment of the total diffractive cross section is of course a
test of the different parton density input. contributions,

The exponent ng, which determines the “hardness” of
the CKMT gluon distribution, is a free parameter. To see
how sensitive the results are to its value, we compare in
Fig. 9 results for FP and F cc̄

P for ng = −0.5 and −0.9
at the same Q2 values as in Fig. 8. The charm part, F cc̄

P ,
is most directly sensitive to the gluon distribution. The
shape of the curves does not change much. However, as
F cc̄

P receives its contribution from gluons with high mo-
mentum fraction β due to the presence of the cut-off in
the convolution (1), the harder distribution, ng = −0.9,
yields a significantly larger prediction. This is most pro-
nounced at high β and similar for all values of Q2. For the
total FP , the more singular gluon distribution results in
an increase, in particular at larger Q2. The exponent ng

enters on the one hand through the charm contribution
discussed above. On the other hand, it also influences the
light quark contribution through the QCD evolution. The
curves clearly show that the hardness of the gluon distri-
bution is relevant for the total diffractive cross section.

It is interesting to see the contribution of the diffractive
production to the total DIS structure function, F2(x,Q2).
To compare to the results in Sect. 2, we convert this into
the virtual photon cross section, σ(W,Q2). For this pur-
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Fig. 10. Diffractive charm contribution to the total charm pro-
duction cross section for different values of Q2; from top to bot-
tom Q2 = 0, 1.39, 2.47, 4.39, 7.81, 13.9, 24.7, 43.9, 78.1 GeV2.
Solid lines: ng = −0.5. Dotted lines: ng = −0.9

pose, we must integrate the diffractive contribution in (12)
over xP and t. For xP we integrate up to 0.1, which de-
fines our lower limit for the rapidity gap. We use for the
Pomeron intercept in the flux factor a value αP (0) = 1.13
as in [5]. We show in Fig. 10 these diffractive contribu-
tions at the same Q2 values as for the total in Fig. 4.
They increase rapidly from their threshold and then reach
an approximately powerlike W -dependence. Comparison
of Figs. 4 and 10 shows that the diffractive production is
for large energies an order of magnitude smaller than the
total. For large energies, the result for the harder gluon
distribution is about a factor 1.5 higher.

4 Beauty production

We now repeat some of the above calculations for the pro-
duction of beauty quarks. Due to the larger mass, this
of course involves a different factorization scale and thus
probes the gluon distribution at a much higher scale; we
take it as 4m2

b . The cross section can be calculated us-
ing the same photon-gluon fusion mechanism and the ap-
proach discussed above. The only difference is the mass of
the b-quark, which we take as mb = 4.7 GeV. It can be
found using the mass of the charm quark from the follow-
ing relation

mb −mc = m̄B − m̄D , (25)

Fig. 11. Cross sections for photo-and electroproduction of
beauty predicted by this paper for different values of Q2; from
top to bottom Q2 = 0, 1.39, 2.47, 4.39, 7.81, 13.9, 24.7, 43.9, 78.1
GeV2

which is valid in QCD up to small corrections ∼ 1/mQ

[36]. The quantity m̄B ≡ (mB + 3mB∗/4) in Eq.(25) de-
notes the center of gravity value for the lowest mesonic
state (the same holds for m̄D).

Predictions for the cross section for beauty produc-
tion by real and virtual photons are shown in Fig. 11. The
threshold is higher than for charm production, but the
general shape of the cross section is similar. The magni-
tude is typically two orders of magnitude lower, which is
due to the larger mass and the smaller charge. The con-
tribution of diffractive beauty production to FP (β,Q2) is
shown in Fig. 12. The β value for which the result be-
comes zero has decreased due to the larger quark mass.
The shape of the curves, their dependence on Q2 and the
hardness of the gluon function are similar as for charm
production, Fig. 9. The contribution to the structure func-
tion F2(x,Q2) is shown in Fig. 13. The threshold energy is
now higher, but for the rest a similar behaviour to charm
production can be seen: as in Fig. 10, the diffractive con-
tribution is again an order of magnitude smaller than the
total DIS beauty production and the sensitivity to the
hardness of the gluon distribution looks the same. In gen-
eral, these cross sections are much smaller than in the case
of charm and large statistics is needed to observe them ex-
perimentally.
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Fig. 12. Beauty contribution to the Pomeron structure func-
tion predicted by this paper at different values of Q2: from
top to bottom Q2 = 500, 100, 10 GeV2. Solid lines: ng = −0.5.
Dotted lines: ng = −0.9

5 Summary

The main goal of this paper was to probe the gluon dis-
tribution in the Pomeron by means of diffractive heavy
quark (charm, beauty) production. Given the present un-
certainty in the data as well as the high sensitivity of per-
turbative QCD calculations to the heavy quark mass, we
have here pursued a simple phenomenological approach to
obtain a description of the main features of heavy quark
production. First we showed that the data for total open
charm photo- and electroproduction could be well
described by using the gluon distribution of the proton
predicted by the CKMT model, together with the photon-
gluon fusion mechanism. From this comparison to the data
we extracted a value of mc = 1.4 GeV for the charm quark
mass parameter and confirmed the finding of [15] that 4m2

c

is a good factorization scale. Having established this ba-
sis, we proceeded to diffractive charm production. We ob-
tained results with gluon distributions of different models
and compared their contribution to the total diffractive
structure function of the Pomeron. For the CKMT model,
we investigated how the results depend on the high mo-
mentum behaviour of the gluon distribution. A similar
study was made for beauty production.

In conclusion we found that different models for the
gluonic content of the Pomeron lead to sizeable differences
for diffractive charm production which experiments, such
as the future high statistics experiments at HERA [37],

Fig. 13. Diffractive beauty contribution to the total
beauty production cross section predicted by this paper
for different values of Q2; from top to bottom Q2 =
0, 1.39, 2.47, 4.39, 7.81, 13.9, 24.7, 43.9, 78.1 GeV2. Solid lines:
ng = −0.5. Dotted lines: ng = −0.9

should be able to distinguish. For beauty production, sim-
ilar features were found, but the cross sections are much
smaller and thus more difficult to measure.
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Appendix

For the QCD evolution equation one needs the quark dis-
tributions at an initial scale Q2

0. Up to Q2 = 5 GeV2

the total valence and sea quark distribution in LO can
directly be extracted from F2(x,Q2) as parametrized by
the CKMT model in [9]:

F val
2 (x,Q2) ≡ 4

9u
v(x,Q2) + 1

9d
v(x,Q2)

= Cf (x,Q2)x1−αf (1 − x)n(Q2) ,
F sea

2 (x,Q2) ≡ 8
9u

s(x,Q2) + 2
9d

s(x,Q2) + 2
9s

s(x,Q2)
= CP (Q2)x−∆(Q2)(1 − x)n(Q2)+4 ,

(26)
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with the functions

Cf (x,Q2) = B(x)
(

Q2

Q2+b

)αR

,

CP (Q2) = A
(

Q2

Q2+a

)1+∆(Q2)
,

∆(Q2) = ∆(0)
(
1 + d0Q2

Q2+d1

)
,

n(Q2) = 3
2

(
1 + Q2

Q2+c

)
.

(27)

This parametrization has been constructed in such a way
that for x ∼ 1 it is in accordance with the dual parton
model at low Q2 and with dimensional counting rules at
very large Q2. The low x behaviour is readily explained in
terms of Reggeon exchanges; the secondary Regge trajec-
tory with intercept αf , corresponding to (f,A2)-exchanges,
determines the small x distributions for the valence quarks,
while the “effective” Pomeron exchange determines them
for the sea quarks (and the gluon). The exponents in Cf

and CP are chosen such that the photolimit (Q2, x → 0)
is finite.

The function B was written as the sum of the u and d
quark contribution, B = Bu +Bd, and is different for the
proton and the deuteron:

Bu = 4
9Cu,

Bd = 1
9Cd(1 − x) for the proton ,

Bu = 2
9 [Cu + Cd(1 − x)] ,

Bd = 1
18 [Cu + Cd(1 − x)] for the deuteron ,

(28)

where the constants Cu and Cd were obtained from the
condition that the integrals of the valence distributions
over x should give the correct number of valence up and
down quarks in the proton. Here the constants for the
deuteron are related to those of the proton through isospin
symmetry. For the sea quarks the simple assumption is
used that us = ds and ss = 0.5us, in reasonable accor-
dance with the results from νN interactions.

Also the gluon distribution for low x is determined by
the Pomeron exchange and is thus proportional to the sea
quark distributions. However, since sea quarks are pro-
duced mostly by gluons, the distribution of gluons will be
harder than the one of the sea quarks. This leads to the
gluon distribution in (6):

xg(x,Q2) = G
F sea

2 (x,Q2)
1−x

= Cg(x,Q2)x−∆(Q2)(1 − x)n(Q2)+3 ,
(29)

where the proportionality factor G was obtained from the
momentum sum rule at Q2 = 2 GeV2.

The parameter d0 in the effective Pomeron intercept
was originally [9] put equal to 2 in order to have for the
bare Pomeron a value of ∆bare that is 3 times larger than
∆(0), in agreement with analyses of hadronic interactions
[27]. The seven remaining free parameters of the model
were fitted in [9] to the data on total γp interaction cross
section and to the proton structure function data of NMC.
They are given by

a = 0.2631 , b = 0.6452,
c = 3.5489 , d1 = 1.1170 ,
A = 0.1502 , ∆(0) = 0.07684,
αf = 0.4150 .

(30)

Here the parameters a, b, c and d1 are given in units of
GeV2. With these values for the free parameters one finds
explicitly for the coefficients:

Cu = 2.714 , Cd = 1.618 , G = 12.63 . (31)

However, using new HERA data in the region of Q2 < 2
GeV2 [38,39] it is possible to determine the parameters d0
and d1 with better accuracy: d0 = 2.2 , d1 = 0.6 GeV2.
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